
39th Meeting of Voorburg Group on Service Statistics
Modernizing Official Statistics: Transition to Open-Source

Systems for Production of Producer Price Indexes
Session: Cross Cutting Topics

Xin Ha (Statistics Canada) Steve Martin (Statistics Canada)

Abstract

In response to growing demands for transparency, agility, and cost-efficiency in the produc-
tion of official statistics, Statistics Canada has modernized the infrastructure supporting its
Producer Price Indexes. The transition from legacy corporate systems to reproducible analyti-
cal pipelines based on open-source tools has led to significant improvements in reproducibility,
methodological flexibility, and operational resilience. This paper outlines the rationale, tech-
nologies, implementation strategies, and challenges associated with the modernization initiative,
and offers lessons for other national statistical offices undergoing similar transformations.

1 Introduction
The Producer Price Indexes (PPIs) are a collection of macroeconomic statistics that measure the
evolution of prices faced by domestic producers over time, and are a core component of Canada’s
system of official economic statistics. Their primary role is to deflate nominal GDP to produce
accurate measures of real economic output, but they also find applications supporting monetary
policy by providing timely indicators of inflationary pressures in the economy, indexing industrial
contracts, and informing business planning and economic research. The central role of the PPIs in
the system of economic statistics, and broader economic analysis, confers a certain importance on the
computer systems used to make these statistics. Historically this meant building large, monolithic
in-house systems designed to encode a small collection of well-defined workflows for making price
indexes. Although there are merits to this approach and it can work well for certain kinds of
workflows, we found that these legacy systems were increasingly becoming a barrier to making new
PPIs and improving existing ones.

The most salient issue with the incumbent systems was their lack of flexibility, both in terms of
the kinds of data and methods they could use, and the types of workflows they supported. These
systems were built as stand-alone systems to work with a handful of index-number formulas that
were traditionally used for indexes made with survey data, precluding the use of newer or more
complex methods that are needed for indexes made with non-survey data (e.g., multilateral index-
number formulas for retail services and housing). The tightly-coupled architecture of these systems
made it complicated to change the types of methods and data that could be used to make the PPIs.
This lack of methodological flexibility spawned numerous “satellite” programs to fill the gaps in
the corporate systems, leading to fragmented analytical workflows in which certain, usually quite

1



important, computations were done outside the corporate systems. The results from these satellite
programs would then need to be loaded into the corporate systems in such a way as to give the
desired result.

These systems were similarly computationally slow. Computing some PPIs took several hours,
limiting the ability to analyze the indexes or incorporate new data late in the production cycle.
Dozen of PPIs all needing to use one system created a scheduling problem and constrained the kinds
of workflows analysts could use to make their indexes.

Although lack of flexibility was the most obvious drawback of the corporate-systems model for
making PPIs, it also created an environment in which the production of the PPIs was treated as an
opaque process. This reduced the transparency for how the PPIs were constructed and engagement
from analysts. The production of PPIs became largely procedural, reducing analysts’ understanding
of the underlying processes and, in turn, limiting their ability to enhance the indexes over time.

Over the last several years, we have been moving towards a more modern and flexible approach to
building the PPIs at Statistics Canada centered around open-source software and workflows. The
transition reflects broader trends in public sector innovation and digital transformation. Although
there have been some challenges, the move has improved our ability to construct official statistics.

2 The shift to open-source software
The shift away from large corporate systems to make the PPIs was driven by the adoption of
open-source software and workflows that are widely used for data science and statistics. The guid-
ing principle was to cast the construction of the PPIs in the framework a reproducible analytical
pipeline (RAP) (NHS RAP Community of Practice 2024).1 This transition had the obvious goals
of moving to a more flexible and transparent architecture for making the PPIs, but also had the
aim of moving the process to make the PPIs onto more domain-aligned teams. Giving the team
responsible for constructing a PPI ownership of the pipeline to make the index was a key target
to advancing how the PPIs are made over time and empowering analysts to move beyond routine
tasks. This enhances analysts’ comprehension of the underlying processes and methodologies, while
simultaneously ensuring systematic and comprehensive documentation that supports transparency,
auditability, and long-term maintainability.

2.1 Enabling technologies

The abundance of open-source tools for working with data and statistics means there are several
ways to implement a RAP (see, e.g., Rodrigues 2023; The Turing Way Community 2025). Different
combinations of tools imply different tradeoffs, and we settled on a set of tools that balanced easy-
of-use with good properties around reproducibility. As is usually the case for a RAP, R and Python
are the main tools for manipulating data and doing statistical computations, with git being used
for version control. An internal instance of GitLab complements git. Most PPIs are calculated
with a similar workflow, and developing new open-source software such as the piar (e.g., Martin

1The goal was specifically to target the baseline level of the RAP framework, with a quick move to the silver level.
We did not aim for the gold level because price indexes require carefully analysis and are not amenable to being built
on event-based triggers or on a schedule.

2

https://nhsdigital.github.io/rap-community-of-practice/introduction_to_RAP/levels_of_RAP/


2024) package has been useful for streamlining index calculations, as it allows users to efficiently
implement the required computations while maintaining flexibility in methodology and design.

To ensure a consistent computational environment, virtual environments are managed with conda
(conda contributors, n.d.) and an internal mirror of conda forge. Unlike Python virtual environments
or {renv} (Ushey and Wickham 2025), conda is a polyglot tool that gives a reasonable level of
environment management without being complex to use.2 Pipeline orchestration and data versioning
are both handled by dvc (The DVC team and contributors 2020). PPIs are usually made monthly
or quarterly, and dvc makes it straightforward to version the pipeline used to construct the index
at a given point in time. Other pipelining tools like {targets} (Landau 2021) offer more flexibility
for defining a pipeline at the expense of data versioning; having these functions coupled makes
dvc useful for PPIs that have constantly evolving data without computationally heavy workflows.
Taken together, these tools give the means to construct a data pipeline for making PPIs with strong
properties around reproducibility.

It’s worth noting that this is a fairly lightweight set of tools to implement a RAP. Any linux machine
with git and conda, and access to (a mirror of) conda forge, is suitable to implement a RAP with
these tools. In practice this is done on cloud infrastructure using a linux-based data science container,
but the software imposes few restrictions on the computational environment.

2.2 Modernized workflow

With the tools in place, it becomes straightforward to build the PPIs in the RAP framework. Each
PPI is treated as its own project under version control (i.e., its own git repo), structured as a
research compendium. There is an environment.yaml file that defines the conda environment, a
collection of R/Python scripts that define the steps to get from raw data to final index, and a
dvc.yaml file that defines how these scripts are executed.3 Building a PPI is just a case of executing
the pipeline with dvc in the conda environment and, at each point in time, the commit associated
with the state of the project used to make the index is tagged with its associated reference period.
This makes it easy to checkout the state of the pipeline and computational environment used to
build a PPI at that point in time. GitLab is used to collaborate on the construction of the PPIs
with a conventional GitOps-style workflow.

As an example, Figure 1 illustrates a simple end-to-end data pipeline used in the modernized pro-
duction of the PPIs. The pipeline consists of three core steps: data ingestion, cleaning and trans-
formation, and index calculation, each of which is done by one or more R/Python scripts. The
scripts to execute these steps are orchestrated with dvc and run in a conda environment to execute
everything in a stable software environment. The results of this pipeline are some analytical reports,
a file used by a downstream system to disseminate the PPI, and cloud storage that houses the input
and output data from the pipeline. By decoupling operational logic from the tools that support it,
this architecture promotes scalability and allows analysts to easily adapt the workflow to make a
PPI.

2Docker is another popular tool for managing environments. It gives more control over the environment than
conda, but is consequently harder to use. Similarly, {rix} (Rodrigues and Baumann 2025) is an R-centric alternative
to {renv} with more control over the environment.

3See work by the UN Task Team for Scanner data for an example.

3

https://book.the-turing-way.org/reproducible-research/compendia
https://github.com/UN-Task-Team-for-Scanner-Data/price-index-pipeline


Figure 1: Example of a PPI data pipeline.

The main benefits of this change in architecture were a reduction is the amount of resources needed to
make the PPIs (Figure 2) and improved transparency about how the PPIs are calculated. Allowing
each PPI to exist as its own pipeline meant that the pipeline could be constructed in a way that made
sense for the specific data and methods of the index; consequently, fewer modifications were required
to align the workflow for a PPI into the mold of a rigid corporate system, promoting transparency
and leaving more time to collect the data needed to make the PPI. A key piece of realizing these
benefits was having the pipelines be created and updated over time by domain-aligned teams.

4 0.12 0

100

75

24

35

0

25

50

75

100

Divisional w
orkforce

IT re
sources

Processing tim
e per ru

n (h
rs)

Statistical programs

Performance metric

C
ou

nt

System

Legacy

Modernized

Figure 2: PPI system performance.

3 Challenges
There were two notable challenges that we faced when transitioning towards the model of a RAP for
making the PPIs. Adopting new tools and workflows required a significant shift in both technical
skills for analysts and team culture. The abundance of high-quality and freely-available material for

4



R, Python, git, and RAPs helped with the mechanics of the new tools. The change in workflow
required analysts to better understand the structure and methods of a price index, as these need to be
explicitly defined as part of the pipeline. As analysts are now responsible for the entire workflow from
data ingestion to index calculation, validation, and dissemination, they are required to understand
not only the mechanics of the process but also the underlying economic and statistical concepts. This
has transformed the role of analysts to active stewards of the full end-to-end production process.

Integrating open-source tooling and workflows within Statistics Canada’s existing IT governance
framework was another challenge that required considerable collaboration with corporate IT and
infrastructure teams. This has become easier as open-source tools become more ubiquitous at
Statistics Canada, but nonetheless represents a change in paradigm that required close collaboration
with corporate IT.

4 Conclusion
The adoption of open-source tools and workflows has transformed the way Statistics Canada pro-
duces its PPIs. Structuring a PPI as a RAP with a lightweight and open-source software stack
provides a foundation for transparency, reproducibility, and scalability. This transition enables
more agile statistical production, elevates analysts’ skills and prepares Statistics Canada for future
innovations in real-time data, machine learning, and big data analytics. Our experience can serve as
a model for other statistical programs modernizing their infrastructure and workflows in alignment
with international best practices and digital government strategies.

References
conda contributors. n.d. “conda: A system-level, binary package and environment manager running

on all major operating systems and platforms.” https://github.com/conda/conda.
Landau, William Michael. 2021. “The Targets R Package: A Dynamic Make-Like Function-Oriented

Pipeline Toolkit for Reproducibility and High-Performance Computing.” Journal of Open Source
Software 6 (57): 2959. https://doi.org/10.21105/joss.02959.

Martin, Steve. 2024. “piar: Price Index Aggregation R.” Journal of Open Source Software 9 (101):
6781. https://doi.org/10.21105/joss.06781.

NHS RAP Community of Practice. 2024. “RAP Community of Practice.” https://nhsdigital.github.
io/rap-community-of-practice/.

Rodrigues, Bruno. 2023. Building Reproducible Analytical Pipelines with R. https://raps-with-
r.dev/.

Rodrigues, Bruno, and Philipp Baumann. 2025. rix: Reproducible Data Science Environments with
“Nix”. https://doi.org/10.32614/CRAN.package.rix.

The DVC team and contributors. 2020. “DVC: Data Version Control - Git for Data & Models”.”
https://doi.org/10.5281/zenodo.012345.

The Turing Way Community. 2025. The Turing Way handbook for reproducible, ethical and collab-
orative research (version 1.2.3). https://doi.org/10.5281/zenodo.15213042.

Ushey, Kevin, and Hadley Wickham. 2025. renv: Project Environments. https://doi.org/10.32614/
CRAN.package.renv.

5

https://github.com/conda/conda
https://doi.org/10.21105/joss.02959
https://doi.org/10.21105/joss.06781
https://nhsdigital.github.io/rap-community-of-practice/
https://nhsdigital.github.io/rap-community-of-practice/
https://raps-with-r.dev/
https://raps-with-r.dev/
https://doi.org/10.32614/CRAN.package.rix
https://doi.org/10.5281/zenodo.012345
https://doi.org/10.5281/zenodo.15213042
https://doi.org/10.32614/CRAN.package.renv
https://doi.org/10.32614/CRAN.package.renv

	Introduction
	The shift to open-source software
	Enabling technologies
	Modernized workflow

	Challenges
	Conclusion
	References

